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Ice detection in debris disks

• Observation of water ice features in 3 µm

• Other constraints from 44 and 62 µm observations

• Abundant water ice detection in molecular clouds, protoplanetary disks, and
likely in outer planetary systems
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Future instrumentation

• Observation of water ice features in 3 µm
→ JWST NIRCam (aiming for 0.6 to 5 µm)

• Other constraints from 44 and 62 µm observations
→ SPICA SAFARI (aiming for 34 to 230 µm)

• Significant progress on our understanding about the ice in the debris disks
by next-generation observatories
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Main question

Which are the observational requirements either ...

• to constrain the detectability of ice in debris disks or

• to provide useful limits for the existence, properties, and spatial
distribution of ice in debris disks ?
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Numerical methods: Model parameters

Parameters Values
Stellar type β - Pic like A6 V with 1.75 M� , R = 1.8 R� , and 8052 K (Mamajek 2002)

Rin and Rout 3 au and 150 au
Distance to the debris disks system 19.3 pc
Size range modeling n(a) [0.1 µm, 1000 µm] with n(a) ∝ a−3.5 (Dohnanyi 1969)

Chemical component Amorphous water ice (Li & Greenberg 1998; Potapov+ 2018b; Curtis+ 2005)

Crystalline water ice (Curtis+ 2005; Reinert+ 2015; Häßner+ 2018; Potapov+ 2018b)

Astrosilicate (Draine 2003)

Various dust aggregates Spherical shape of astrosilicate matrix-ice inclusion
MG rule of EMT calculation with the emc code Spherical shape of astrosilicate core-ice mantle
(Ossenkopf 1991) Spherical shape of porous ice

Platelets shape of astrosilicate matrix-ice inclusion

Fractional ratio of ice Fice 0, 0.25, 0.5, 0.75, and 1

Different mechanism of ice destruction Sublimation, UV photosputtering, and collision

Simulated observations : DMS (Debris around Main-sequence Stars; Kim et al. 2018) 3



1-1. SED: Impact of ice destruction mechanism

Strong influence of different ice destruction mechanisms, e.g., UV photosputtering, collisions, and
sublimation, on the SED
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1-1. SED: Impact of ice destruction mechanism

Destruction of small size ice →significantly decreased scattered radiation at the near-IR to mid-IR
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1-1. SED: Impact of ice destruction mechanism

Significant erosion of ice grain by UV photosputtering (and collision) far beyond the sublimation
line
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1-1. SED: Impact of ice destruction mechanism

Less efficient contribution of UV photosputtering (and collision) to the destruction of bigger grains
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1-1. SED: Impact of Fice in Astrosil + ice mixtures

Fice is responsible for various features on the SED.
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1-1. SED: Impact of Fice in Astrosil + ice mixtures

Ice-poor→shallow peak strength of 3 µm ice feature
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1-1. SED: Impact of Fice in Astrosil + ice mixtures

Where is 10 µm silicate feature?
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1-1. SED: Impact of Fice in Astrosil + ice mixtures

44 and 62 µm ice features
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1-2. Polarization degree: Impact of Fice in Astrosil + ice mixtures

Highly polarized radiation of 3 µm ice feature
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1-2. Polarization degree: Impact of Fice in Astrosil + ice mixtures

Highly polarized radiation of 3 µm ice feature
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2-1. Spatially resolved images: Impact of ice destruction mechanism

Smaller difference with increasing observing wavelength.
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2-1. Spatially resolved images: Impact of Fice in Astrosil + ice mixtures

The surface brightness transition at 10 µm due to the ice sublimation.
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2-2. Tracing the ”ice survival line” of blowout grain size

The ice survival line ∝ chemical component, different shape of aggregates, and physical states
(amorphousness vs crystallinity) of the icy-dust aggregates.
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How do we constrain the detectability of water ice in debris disks?
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Refractive indices (n & k) of water ice

Around 3 and 44 µm
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3-1. Evaluating the detectability of ice dust grains with JWST

Significantly increased ratio between surface brightness at 2.8 and 3.8µm in the inner part of disks
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3-2. Evaluating the detectability of ice dust grains with SPICA

Nearly identical ratio between surface brightness at 35µm and 44µm for Astrosil-ice mixture
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Take home messages: the feasibility to detect ice in debris disks

• Strong influence of the sublimation, collisions, and photosputtering on the
observational appearance of debris disk systems

• Enhanced polarization levels in the 3 µm ice band for the ice-rich aggreagates

• The different ice survival line of debris disk system by the different physical states, a
component of dust aggregates, and porosity

• Predictions on the feasibility to detect ice and spatially resolve characteristic
structures with JWST and SPICA.
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Thank you so much for your attention and happy holiday!
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Extra pages
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Introduction - Previous theories of icy-dust grains

• Surface density of solid matter increases beyond the snow line due to the increase
of the icy dust mass, which enables to form a massive 10 earth-mass solid core of
the gas giant (Hayashi et al. 1985).

• Icy planetesimals or comets bring the water to Earth (Morbidelli et al. 2000; Raymond et al.

2004) ?

• Water ice evaporation at the inner region of the disk brought the oxygen isotope
anomaly seen in the meteorites (Yurimoto & Kuramoto 2004).
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Introduction - Previous observations of icy-dust grains

• Ice grain has been detected around protoplanetary disks! 3 µm, 44 µm, and 62 µm
water ice absorption & emission features. (Malfait et al. 1999; Molster et al. 2002; Terada et al.
2007; Terada & Tokunaga 2012; Aikawa et al. 2012).

• As for the debris disks, even the presence of ice grains is not clearly established
observationally. A tentative detection of the 62 µm water ice emission feature is
claimed (Chen et al. 2008). Some literatures concluded from comet studies that
water-ice is not so abundant.
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Method - DMS : Debris around Main-sequence Stars (Kim et al. 2018)

- Scattered light intensity and polarization maps:

Wsca
λ = Lλ,∗Qsca

λ (a) πa
2

4πr2 S11(θ)dθ, (1)

(Wsca
λ )pol = Lλ,∗Qsca

λ (a) πa
2

4πr2 S12(θ)dθ, (2)

- Thermal re-emission maps:

Wabs
λ = Lλ,∗Qabs

λ (a) πa
2

4πr2 , (3)

Wre−emi
λ = 4πa2Qabs

λ (a)Bλ(Tg), (4)

- The distance from the star (the temperature of spherical dust grain):

r(Tg) =
R∗
2

√∫∞
0 Qabs

λ (a)Lλ,∗dλ∫∞
0 Qabs

λ (a)Bλ(Tg)
. (5)
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Method - DMS: Debris around Main-sequence Stars (Kim et al. 2018)
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Method - complex refractive index (or optical constant) of a particle

• The complex permittivity ε = m2 = (n+ ik)2 = (n2 - k2) + i(2nk)
, where n is the real part of the refractive index (responsible for scattering), k is the imaginary part of the

refractive index (responsible for absorption and emission).

• Both n and k depend on the wavelength and chemical composition. If k is equal to 0
at a given wavelength thus a particle does not absorb radiation at this wavelength.
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Method - Effective medium theory (EMT)

• Effective medium approximations are descriptions of a medium (composite
material) based on the properties and the relative fractions of its components and
are derived from calculations.

• Maxwell Garnett approximation:(
εeff − εm
εeff + 2εm

)
= δi

(
εi − εm
εi + 2εm

)
(6)

, where εeff is the effective dielectric constant of the medium (i.e., the complex permittivity), εi is the one
of the inclusions and εm is the one of the matrix; δi is the volume fraction of the inclusions.
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Method - emc: The Effective Medium Calculator

• The emc code (Ossenkopf-Okada 1991) allows one to find the effective
refractive index, e.g., the scattering and extinction behavior, for some rules of
the effective medium approximations (e.g., Maxwell-Garnett rule used in this
study), several kinds of inclusions of different shapes with different bulk
materials.
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2 ways of water ice destruction: Sublimation (Kobayashi et al. 2011)

• For the excesses are reproduced by
a single temperature blackbody
emission, the peak in the number of
systems with a given Tgrain occurs at
110 - 120K.

• Observed color change beyond 120
AU (Golimowski et al. 2006).

• Absence of warmer grains: as a
result of sublimation of ice in the
inner part of the disk?
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2 ways of water ice destruction: UV photosputtering (Grigorieva et al. 2007)

• If the energetic photon is absorbed
close to the surface, the molecules
may escape.

• Taking into account possible
collisional activity slightly improves
the situation.

• Herschel observation (Morales et al.
2016) shows the larger minimum
grains (fMB = amin/aBO ∼ 5).
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2-2. Tracing the ”ice survival line” of blowout grain size

Chemical component (even vacumm) and physical states (amorphous vs crystallinity)
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2-2. Tracing the ”ice survival line” of blowout grain size

Chemical component, different shape of aggregates, and physical states
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